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The problem of the mathematical modelling of anisotropic beams rotating with constant
angular speed about their longitudinal body-axis fixed in the inertial space is addressed.
The analysis is conducted in the context of a refined theory of thin-walled anisotropic
composite beams which incorporates a number of non-classical effects. Among them, there
are the transverse shear, the primary and secondary warping effects. Special attention is
paid to the influence played by anisotropy of constituent materials, boundary conditions
and spinning speed on forward and backward precession frequencies and on instability
speed. A number of applications involving both axisymmetric and doubly symmetric
cross-section beams are presented and pertinent conclusions are outlined.
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1. INTRODUCTION

A growing interest toward the incorporation of composite material systems in the design
of rotating structures (e.g., turbine and helicopter blades, tilt rotor aircraft, rotating shafts
and robotic manipulator arms) has been manifested in the last few years.

This trend, which is likely to continue and intensify, is driven by the demands of lighter
and more flexible structures, capable of higher performance, as compared to their metallic
counterparts. By virtue of their directionality property, the composite material systems
provide unique capabilities enabling one to achieve totally new types of elastic couplings.
Such a design, leading for example to the coupling between bending and torsional behavior
of a beam has been successfully employed in the design of the X-29 swept-forward wing
aircraft in order to eliminate, without weight penalties, the aeroelastic divergence
instability. Another type of coupling, between extension and twist, is of interest for
applications in helicopter and turbine blades and in tilt-rotor aircraft.

A class of rotating structures, namely the one characterized by the angular velocity
vector (spin rate vector) parallel to their longitudinal axis, plays a great role in the
advanced technology (see references [1–3]). This type of structures is found in gas turbines
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for higher power aircraft engines, in helicopter drive applications, in space structures such
as satellite booms as well as in modern machinery.

The incorporation of the new composite materials for future high performance spinning
structural systems constitutes a natural trend which is likely to grow in the years ahead.
However, in order to exploit in the best way the capabilities provided by the new material
systems, a better understanding of the implications on the dynamic response characteristics
of elastic couplings generated by their anisotropy is needed. The clarification of this
problem constitutes one of the basic goals of this paper. In addition, it aims to supply a
comprehensive derivation and solution of the dynamics of spinning structures modelled
as thin-walled beams under various boundary conditions. Due to the complexity of
accelerations acting throughout the system, the analysis of spinning structures differs from
that of their non-rotating counterparts. Indeed, in addition to the accelerations arising
from elastic structural deformations, the ones associated with Coriolis and centripetal
effects have to be included into the system.

The derived governing equations incorporate a number of non-classical effects such as
transverse shear, warping inhibition, rotatory inertia, Coriolis acceleration and anisotropy
of the spinning structure.

Although the pertinent governing equations are obtained for the case of an arbitrary
cross-section, the numerical applications are confined to the case of a rectangular
cross-sectional beam.

Based on these equations, the problem of the frequency spectrum corresponding to the
backward and forward precession, as well as the determination of the critical spin rates
(i.e., of such spin rates for which the structure frequencies go to zero, this resulting in a
divergence-type instability) are investigated.

In order to achieve an increase of the spin rate without the occurrence of instability by
divergence (i.e., in order to optimize the spinning structure), a structural tailoring analysis
is pursued. To this end, a circumferentially uniform stiffness configuration is implemented,
in which context the entire system of governing equations splits exactly into two
independent systems, one of them involving the bending–bending–transverse shear
couplings and the other one involving the twist–extension coupling (see references [4, 5]).

The available body of literature reveals that this problem was approached in the
framework of the solid beam theory (i.e., within the Euler–Bernoulli [1, 6–10] and
Timoshenko [11–14] beam models), and of circular cylindrical shell theory [15–19].
Moreover, with a few exceptions, the analysis was generally done in the context of metallic
structures only.

To the best of the authors’ knowledge, this study presents for the first time a
comprehensive modelling and analysis of advanced spinning structures modelled as thin
walled anisotropic beams in which, towards the goal of optimizing their dynamic
performances, the tailoring technique is implemented.

2. CO-ORDINATE SYSTEMS AND BASIC ASSUMPTIONS

The case of a straight untwisted flexible beam of length L spinning along its longitudinal
z-axis at a constant rate V is considered (see Figure 1). Two sets of co-ordinates, an inertial
one OXYZ, and a rotating frame of reference Oxyz with the common origin O, located
in the geometric center (coinciding with the elastic center of the beam), are considered.
It is supposed that at t=0, the axes of the two systems coincide while, in the undeformed
configuration, the body-fixed and inertial co-ordinates Oz and OZ coincide at any time
t. Associated with the co-ordinate systems (x, y, z) and (X, Y, Z) one defines the unit
vectors (i, j, k) and (I, J, K), respectively. In addition to the previously defined system
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co-ordinates, a local (surface) one, (n, s, z) associated with the beam is considered. In the
light of the stipulated assumptions one can represent the spin rate vector V as
V=Vk(0VK) with V� =0.

The adopted structural model is that of a thin-walled beam. In this context, the case
of a single-cell thin-walled beam of arbitrary cross-sectional shape is considered. Toward
its modelling the following assumptions are adopted: (1) the original cross-section of the
beam is preserved, (2) both primary and secondary warping effects are included, (3)
transverse shear effects are incorporated and finally, (4) the constituent material of the
structure features anisotropic properties, and, in this context, a special layup inducing
flapping–lagging coupling is implemented.

3. KINEMATICS

In light of the previously mentioned assumptions and in order to reduce the 3-D
elasticity problem to an equivalent 1-D one, the components of the displacement vector
are represented as (see e.g., reference [5])

u(x, y, z; t)= u0(z; t)− yf(z; t), v(x, y, z; t)= v0(z; t)+ xf(z; t),

w(x, y, z; t)=w0(z; t)+ ux (z; t)[y(s)− n dx/ds]

+ uy (z; t)[x(s)+ n dy/ds]−f'(z; t)[Fv (s)+ na(s)]. (1a–c)

In these equations u0(z; t), v0(z; t), w0(z; t) denote the rigid body translations along the x-,
y- and z-axes while f(z; t) and ux (z; t), uy (z, t) denote the twist about the z-axis and
rotations about the x- and y-axes, respectively. The expressions of ux and uy as well as of
the geometric quantity a(s) are (see reference [5])

ux (z; t)= gyz (z; t)− v'0 (z; t), uy (z; t)= gxz (z; t)− u'0 (z; t),

a(s)=−y(s) dy/ds− x(s) dx/ds. (2a–c)

In equations (1), Fv (s) and na(s) play the role of primary and secondary warping functions,
respectively. For their definition see e.g., references [5, 20].

Figure 1. (a) Thin-walled beam featuring CUS configuration, (b) cross-section of the beam.
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It is readily seen that by virtue of equations (1) and (2), the statement of the cross-section
non-deformability (implying exx =0; eyy =0 and gxy =0 and, consequently,
enn = ess = gsn =0), as well as the continuity requirement of w along the mid-line contour
(i.e., F (1w/1s) ds=0) are fulfilled. It is also seen that in the absence of transverse shear
effects

ux (z; t)=−v'0 (z; t), uy (z; t)=−u'0 (z, t). (3)

In these equations, as well as in the forthcoming ones, the primes denote differentiation
with respect to the longitudinal z-co-ordinate. The position vector of a point M(x, y, z)
belonging to the deformed structure is

R(x, y, z; t)= (x+ u)i+(y+ v)j+(z+w)k, (4)

where x, y and z are the Cartesian co-ordinates of the points of the continuum in its
undeformed state. Recalling that the spin rate was assumed to be constant, the velocity
and acceleration of point M are

R� =[u̇−V(y+ v)]i+[v̇+V(x+ u)]j+ ẇk,

R� =[ü−2Vv̇−(x+ u)V2]i+[v̈+2Vu̇−(y+ v)V2]j+ ẅk. (5a, b)

In these equations the superposed dots denote derivatives with respect to the time t.

4. GOVERNING EQUATIONS

Toward the goal of deriving the equations of motion of spinning beams, and the
associated boundary conditions, Hamilton’s variational principle is used. This variational
principle may be stated as

dJ=g
t1

t0
$gt

sijdeij dt− dK−gVs

sidvi dV−gt

rHidvi dt% dt=0, (6)

where

U=
1
2 gt

sijeij dt and K=
1
2 gt

r(R� · R� ) dt (7a, b)

denotes the strain energy functional and the kinetic energy, respectively.
In these equations, t0 and t1 denote two arbitrary instants of time; dt(0dn ds dz) denotes

the differential volume element; si (0s� jnj ) denote the prescribed components of the stress
vector on a surface element of the undeformed body characterized by the outward normal
components ni ; Hi denote the components of the body forces; Vs denotes the external area
of the body over which the stresses are prescribed; r denotes the mass density; an
undertilde sign identifies a prescribed quantity while d denotes the variation sign. In
equations (6) and (7) the Einstein summation convention applies to repeated indices where
Latin indices range from 1 to 3. In the same equations, (v1, v2, v3)0 (u, v, w),
(x1, x2, x3)0 (x, y, z).

In light of equations (1), (4), (5) and (7) and knowing that dvi =0 at t0, t1, it can readily
be shown that
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g
t

t0

dK dt(0−g
t1

t0

dt gt

rR� · dR dt1
=−g

t1

t0

dt gt

{[ü−2Vv̇−V2(x+ u)]du+[v̈+2Vu̇−(y+ v)V2]dv+ ẅdw]r dt

=−g
t1

t0

dt gt

[[ü0 − yf� −2V(v̇0 + xf� )−V2(x+ u0 − yf)](du0

+ ydf)+ [v̈0 + xf� +2V(u̇0 − yf� )− (y+ v0 + xf)V2](dv0 + xdf)

+ [ẅ0 + (y− n dx/ds)u� x +(x+ n dy/ds)u� y −f� '(Fw + na)]d[w0 + ux (y− n dx/ds)

+ uy (x+ n dy/ds)−f'(Fv + na)}) rdt.

In order to induce the elastic coupling between flapwise bending and chordwise bending,
a special ply angle distribution referred to as circumferentially uniform stiffness (CUS)
configuration (see references [4] and [21]) achieved by skewing angle plies with respect to
the beam axis according to the law u(y)= u(−y), is implemented. Angle u denotes the
dominant ply orientation in the upper and lower surface wall configurations. In this case,
based on equations (7) and (8) and on constitutive equations displayed in references [5]
and [20], from the variational principle (equation (6)), the equations of motion and the
boundary conditions involving this type of coupling are obtained. Employment of
constitutive equations and strain-displacement relationships in these equations results in
the following governing equations:

du0: a43u0x + a44(u00 + u'y )= b1ü0 −2� b� 1� V� v̇�0� − b1u0V
2,

dv0: a52u0y + a55(v00 + u'x )= b1v̈0 +2� b� 1� V� u̇�0� − b1v0V
2,

duy : a22u0y + a25(v00 + u'x )− a44(u'0 + uy )− a43u'x =(b5 + b15)u� y ,

dux : a33u0x + a34(u00 + u'y )− a55(v'0 + ux )− a52u'y =(b4 + b14)u� x , (9a–d)

and the boundary conditions at z=0, L:

du0: Qx =Q0 x or u0 = u
00; dv0: Qy =Q0 y or v0 = v

00;

duy : My =M0 y or uy = u
0y ; dux : Mx =M0 x or ux = u

0x . (10a–d)

Herein Qx (z; t) and Qy (z; t) denote the shear forces in the x and y directions, while Mx (z; t)
and My (z; t) denote the moments about the x- and y-axis, respectively. Their definitions
can be found in references [5] and [20]. In terms of displacement quantities the static
version of homogeneous boundary conditions reads:

du0: a43u'x + a44(u'0 + uy )=0; dv0: a52u'y + a55(v'0 + ux )=0;

dux : a22u'y + a25(v'0 + ux )=0; duy : a33u'x + a34(u'0 + uy )=0. (11a–d)

The coefficients aij = aji and bi appearing in these equations as well as in the forthcoming
ones denote stiffness and reduced mass terms, respectively. Their expressions are displayed
in Appendix A. Equations (9) and (11) reveal that in the context of the above considered
ply angle configuration, in addition to the already mentioned elastic couplings, the
transverse shear is also coupled with lagwise bending, and lagwise (chordwise) transverse
shear is coupled with flapwise bending. Moreover, the Coriolis acceleration, where the
pertinent terms are underscored by a dotted line, induces a supplementary coupling
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between the flapping and lagging bendings. Separately from the above mentioned
couplings, the extension–twist one is induced by the same ply angle configuration. This
type of coupling is important and implemented as such, e.g., in helicopter blades and tilt
rotor aircraft.

Corresponding to the extension–twist motion the governing system is

dw0: a11w00 + a17f0− b1ẅ0 =0,

df: −a66f2+ a17w00 + a77f0−(b4 + b5)f� +(b10 + b18)f� 0+(b4 + b5)V2f=0,

(12a, b)

whereas the associated boundary conditions are

At z=0, w0 =f=f'=0 (13a–c)

and, at z=L,

dw0: a11w'0 + a17f'=0,

df: −a66f2+ a17w'0 + a77f'+ (b10 + b18)f� '=0,

df': a66f0=0. (14a–c)

One should remark that in the system of equations associated with the extension–twist
coupling, equations (12), the Coriolis effect is not involved. Moreover, V2 involves only
the twist equation. This implies that in the absence of the twist-extension coupling (i.e.,
of a17 =0), the two equations become decoupled and, as such, the extension motion
becomes independent on V2.

5. SPECIAL CASES

Two special cases which involve bending–bending–transverse shear coupling are
reported herein. In this context, Case (i) corresponds to axisymmetric shearable thin-walled
beams whose constituent materials feature orthotropic properties, the principal axes of
orthotropy being parallel to the geometrical axes. In this case, the coupling stiffness
quantities a43 = a52 =0, and as a result of the postulated axisymmetry of the construction,

a22 = a33 0A, a44 = a55 0B, b4 + b14 = b5 + b15 0C. (15a–c)

In terms of complex displacement variables defined as

U= u0 + iv0, U= uy +iux , (i=z−1), (16a, b)

the governing equations reduce to

BU0+BU'− b1U� −2ib1VU� + b1UV2 =0, AU0−BU'−BU−CU� =0, (17a, b)

while the homogeneous boundary conditions at z=0, L read:

B(U'+U)=0 or U=0; AU'=0 or U'=0. (18a, b)

It is readily seen that the stiffness quantity B associated with the transverse shear effect
couples the two governing equations. Solutions of the eigenvalue problem based on this
complex representation can be found e.g., in references [11–13]. Case (ii), involves
the non-shear deformable case. Elimination from equations (9) and (11) of the
quantities a44(u00 + u'y ) and a55(v00 + u'x ), followed by consideration of equation (3) stating
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the absence of transverse shear, results in the governing equations of motion:

du0: a22u20 + b1ü0 − (b5 + b15)ü00 −2� b� 1V� v̇�0 − b1u0V
2 =0,

dv0: a33v20 + b1v̈0 − (b4 + b14)v̈00 +2� b� 1V� u̇�0 − b1v0V
2 =0, (19a, b)

and of the boundary conditions which have to be prescribed. Their homogeneous
counterpart is

a22u10 − (b5 + b15)ü'0 =0 or u0 =0; a33v10 − (b4 + b14)v̈'0 =0 or v0 =0,

a22u00 =0 or u'0 =0; a33v00 =0 or v'0 =0. (20a–d)

It should be remarked that the governing equations of shearable thin-walled beams,
(equations (9)), and their non-shear deformable counterparts, equations (19), feature the
same order (eight) and as such, four boundary conditions have to be prescribed, in both
cases, at each end z=0, L of the beam. These equations are formally similar to the ones
obtained in the context of a solid beam (e.g., see references [6] and [7]). Equations (19)
reveal that in this special case, the coupling arises only via the Coriolis acceleration effect.
In their absence both equations would be decoupled. As a result, upon defining the
complex displacement variable U(0u0 + iv0), the governing equation system becomes

AU2+ b1U� −BU� 0+2ib1VU� =0, (21)

whereas the homogeneous boundary conditions reduce to

AU1−BU� '=0 or U=0, AU0=0 or U'=0. (22)

In this case, in order to study the associated eigenvalue problem a modal analysis can be
implemented. The problem was approached in this manner in a number of papers (e.g.,
in references [6–9]).

6. THE EIGENVALUE PROBLEM OF GYROSCOPIC SYSTEMS: NUMERICAL
ILLUSTRATIONS

As previously mentioned, there are special cases when the modal analysis can be applied
to solve the eigenproblem associated with the bending–bending–transverse shear coupled
motion. However, for the case described by equations (9)–(11), the modal analysis fails
to provide a solution to the associated eigenproblem. In contrast to this and to this goal,
the displacement functions are represented in the form

(u0(z, t), v0(z; t), ux (z; t), uy (z; t))= (u(z), v(z), u
 (z), u� (z)) elt, (23)

where l stands for the complex frequency while u, v, u
 and u� denote the amplitudes of
u0, v0, ux and uy , respectively. The amplitude functions are represented as

u= s
n

j=1

ajuj (z), v= s
n

j=1

bjvj (z), u
 = s
n

j=1

cj8̂(z), u� = s
n

j=1

dj8� (z), (24a–d)

where uj (z), . . . , 8� (z) are trial functions which have to fulfill the kinematic boundary
conditions. Employment of representations (23) and (24) in the variational integral, (6),
carrying out the indicated variations and the required integrations, yields the equations
expressed in matrix form as

DdB=0, (25)

where D (0A0l2 +A1l+A2) is a polynomial in l with matrix coefficients where A0 and
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Figure 2. Rotating frequency-spin rate interaction for a beam of R=1, and u=0° and 90°: ——, u=0°;
· · · · , u=90°.

A2 are real matrices, A1 is real and skew-symmetric while dB0 (daj , dbj , dcj , ddj )T. From
equation (25), the non-triviality condition for dB requires the fulfillment of

det (A0l2 +A1l+A2])=0. (26)

For a technique enabling one to solve the eigenvalue problem associated with equation
(26) see references [22] and [23] and for a discussion of this method adapted to Matlab
see reference [24]. According to the method in references [22] and [23] the eigenvalues of
the original eigenvalue problem, equation (26), are the same as those of the associated
standard eigenvalue problem

[Z− lI]=0, (27)

where the 4n×4n state matrix [Z] is given by

0 InZ= G
G

G

K

k
– – – – – – – – – – – – – – – – – – –G

G

G

L

l
(28)

−A−1
o A2 −A−1

o A1

while I is the unitary matrix of order 4n. If Z is real, the eigenvalues occur in 2n pure
imaginary complex conjugate pairs lr =2ivr (r=1, 2n) where vr are the rotating
(whirling) frequencies. The values of V� rendering zero-valued eigenvalues correspond to
the divergence instability. In Figures 2–7 graphical representations of the dependence of
natural rotating frequencies upon the spin rate are displayed. All the results are recorded
in terms of the spin speed V and natural frequencies vi normalized by the fundamental
natural frequency v̂ of the non-rotating beam counterpart, this yielding the normalized
spin rate speed V�(0V/v̂) and natural rotating frequencies v̄i (0vi /v̂). Herein
v̂=265·5 rad/s corresponds to a square cross-section beam with clamped–free boundary
conditions whose material is characterized by u=0°. In addition, all the numerical
illustrations are carried out for the case of a box-beam of rectangular cross-section of fixed
dimensions c=4 in, L=40 in, h=0·4 in, whose constituent material is graphite–epoxy.
For its elastic characteristics see e.g., reference [5]). In Figure 2 the dependence v̄i ,
(i=1, 2, 3) versus V� for a square cross-section beam R(0b/c)=1, whose material is
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Figure 3. The influence of the ply angle on rotating frequency–spin rate interaction for a beam of R=1:
——, v̄1; · · · · , v̄2.

characterized by the ply angles u=0° and 90°, is displayed. For the present case (R=1)
and for the non-rotating beam (V� =0) the flapping and lagging frequencies, in each mode
coincide. With the increase of V� , a bifurcation of natural frequencies is experienced, where
the upper and lower branches correspond to the backward whirl and forward whirl,
respectively. The minimum spin rate at which the rotating natural frequency becomes
zero-valued, is called the critical spinning speed, denoted as V� cr . Figure 2 reveals that the
beam characterized by the ply angle u=90° features a considerably larger V� cr than its beam
counterpart characterized by u=0°.

In Figure 3, the effects of the ply angle on the frequency-spin rate interaction of a square
cross-section beam are displayed. The results reveal that for each ply-angle there is a
specific critical spinning speed and that, for this case, the minimum and maximum ones
occur for u=0° and u=90°, respectively.

In Figure 4, the influence of three different combinations of boundary conditions on the
frequency-spin interaction is graphically represented. The results reveal that the minimum
V� cr occurs for the clamped–free beam, the maximum one for the clamped–clamped beam,
whereas the intermediate one occurs for simply supported at both end beams.

Figure 4. The influence of boundary conditions on rotating frequency–spin rate interaction for a beam of
R=1, u=0°: ——, v̄1; · · · · , v̄2.
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Figure 5. The influence of the non-symmetry of the beam cross-section measured in terms of R(R=1, 0·5
and 1·5) on rotating frequency–spin rate interaction, u=0°: ——, R=1; · · · · , R=0·5; —— · · · ——, R=1·5.

Figures 5 through 7 reveal the effects played by the non-symmetry of the beam
cross-section, measured in terms of the parameter R(0b/c) on the frequency-spin rate
interaction. The results emerging from these plots reveal that for a beam characterized by
R$ 1, the non-rotating bending frequencies in flapping and lagging do not coincide. In
addition, for this case, instead of a critical spinning speed, there is a whole domain of
critical spinning speeds for which the dynamic system becomes unstable. Moreover,
Figure 5 reveals that the domain of instability can be shifted toward larger spin speeds
by tailoring the structure. However, as it becomes evident from this graph, this shift of
the instability domain towards larger spin rates is paid for by an enlargement of the domain
of instability. Figure 6 reveals that the shift of the domain of instability towards larger
spin speeds can result also via the combination of different boundary conditions. At this
point, the same remark related to the enlargement of the domain of instability which is
accompanied by this shift, is in order. The results of Figure 5 also reveal that for the beam
cross-sections characterized by Rq 1, the domain of instability is shifted toward

Figure 6. The influence of boundary conditions on rotating frequency–spin rate interaction of a beam
characterized by R=0·5 and u=0°: ——, v̄1; · · · · , v̄2.
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Figure 7. The influence of ply angle on rotating frequency–spin rate interaction for a beam of R=0·5:
——, v̄1; · · · · , v̄2.

larger spin rates but the extent of the domain of instability is similar to that one occurring
for beams featuring RQ 1. From Figure 5 it becomes apparent that the increase of the
ply angle is accompanied by the enlargement of the instability domains and their shift
towards larger spin rates.

It should be remarked that the result related to the divergent critical condition obtained
in reference [27] for a non-shear deformable spinning solid beam has the counterpart in
the case of thin-walled beams. In order to obtain it, starting with the equations (19),
considered in conjunction with the representations (23), upon enforcing the condition
l=0 (condition of divergence) and applying a Rayleigh quotient procedure to the
resulting equations, one finds

V
 2
cr =g

L

0

a22(ū00 )2 dz>g
L

0

b1ū2
0 dz and V� 2

cr =g
L

0

a33(v̄00 )2 dz>g
L

0

b1v̄2
0 dz. (29)

In equations (27), V
 2
cr and V� 2

cr denote the critical speen speeds in divergence associated
with lagging and flapping motions, respectively. For an axisymmetric cross-section beam
the two critical velocities are identical. Otherwise, the lowest of the two is the most critical
one and should be taken into consideration. In equations (29), ū0(z) and v̄0(z) are modal
shape functions corresponding to the lagging and flapping motions, respectively. In the
case of clamped–free boundary conditions, ū0(z) has to fulfill the boundary conditions

ū0 = ū'0 =0 at z=0. (30)

Similar boundary conditions obtained by replacing ū0:v̄0 have to be implemented when
the flapping motion is considered.

It should be remarked that in the case of the unloaded spinning thin walled beams, the
instability can occur only by divergence. In the case of loaded spinning beams, the
instability can occur also by flutter. Details on these issues can be found in references
[25–29].

7. SPINNING THIN WALLED BEAMS SUBJECTED TO A LONGITUDINAL
COMPRESSIVE DEAD FORCE

In the present section the stability of a spinning thin walled beam subjected at its free
end to a longitudinal compressive dead force will be investigated. For the sake of
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simplicity, the case of an axisymmetric non-shearable beam clamped at z=0 and free at
z=L is considered.

Based on equations (19) and (20), using the denotations displayed in equation (15) and
the results of reference [30], the governing equations are

Au20 +Pu00 + b1ü0 −2b1Vv̇0 − b1u0V
2 −Cü00 =0,

Av20 +Pv00 + b1ü0 +2b1Vu̇0 − b1v0V
2 −Cv̈00 =0, (31a, b)

while the boundary conditions are

z=0: u0 =0, u'0 =0, v0 =0, v'0 =0; (32a–d)

z=L: Au10 +Pu'0 −Cü'0 =0, Au00 =0;

Av10 +Pv'0 −Cv̈'0 =0, Av00 =0. (32e–h)

In these equations P denotes the end load positive in compression. Expressing equations
(31) and (32) in terms of the complex displacement U defined by equation (16a) and letting

U(z, t)=f(z) eivt, (33)

where f(z) and v are complex valued quantities, one obtains the equation

Af2+Pf0− b1(v2 +V2)f−2b1Vvf+Cv2f0=0, (34)

and the boundary conditions:

z=0: f=0, f'=0; (35a, b)

z=L: Af1+Pf'+Cv2f'=0, Af0=0. (35c, d)

Multiplying equation (34) by the complex conjugate of f, namely f�, integrating the
resulting equation over the beam span length and using the boundary conditions (35), one
obtains

Kv2 +Gv+Q=0, (36)

where

K= b1 g
L

0

ff� dz+C g
L

0

f'f�' dz−C(f�(L)f'(L)+f(L)f�'(L)),

G=2b1V g
L

0

ff� dz,

Q= b1V
2 g

L

0

ff� dz+P g
L

0

f'f�' dz−A g
L

0

f0f�0 dz− 1
2P(f�(L)f'(L)+f(L)f�(L)).

(37a–c)

In equation (37) the three terms in succession are associated with the kinetic energy,
conservative gyroscopic energy and potential energy of the system, respectively. From
equation (36), the condition for the neutral flutter instability requires v to be a purely real
valued quantity, which implies the fulfillment of the condition G2 −4KQ=0. This
condition represents a statement of coalescence of two eigenfrequencies.
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This condition provides the compressive load yielding the flutter of the snapping
thin-walled beam:

Pflutter =S1/S2, (38)
where

S1 = b1A g
L

0

ff� dz g
L

0

f0f�0 dz−Cb1V
2 g

L

0

f'f�' dz g
L

0

ff� dz

+CA g
L

0

ff� dz g
L

0

f0f�0 dz+Cb1V
2(f�(L)f'(L)+f(L)f�'(L)) g

L

0

ff� dz

−CA(f�(L)f'(L)+f(L)f�'(L)) g
L

0

f0f�0 dz,

S2 = b1 g
L

0

ff� dz g
L

0

f'f�' dz− 1
2b1(f�(L)f'(L)+f(L)f�'(L)) g

L

0

ff� dz

+C g
L

0

f'f�' dz g
L

0

f'f�' dz−C(f�(L)f'(L)+f(L)f�'(L)) g
L

0

f'f�' dz

+C[f�(L)f'(L)+f(L)f�'(L)]2. (39a, b)

In the absence of rotatory inertia terms, i.e., when C=0, the flutter condition becomes

Pflutter =A g
L

0

f0f�0 dz>0g
L

0

f'f�' dz− 1
2(f�(L)f'(L)+f(L)f�(L))1. (40)

In view of equations (38) and (39), one should conclude that when the rotatory inertia
effect is incorporated (i.e., C$ 0), the flutter condition includes also V.

However, when its effect is discarded, according to equation (40), Pflutter is independent
of V. A similar result has been obtained also in reference [27].

From equation (36), one also obtains the condition of the occurrence of the divergence
instability. This is given by

Q=0. (41)

Having in view that in the case of the divergence instability the eigenvalues and
eigenfunctions are real valued quantities, one obtains

Pdiv =0A g
L

0

(f0)2 dz− b1V
2 g

L

0

f2 dz1>0g
L

0

(f')2 dz−f(L)f'(L)1, (42a)

or

V2
div =0A g

L

0

(f0)2 dz−P g
L

0

f2 dz+Pf(L)f'(L)1>b1 g
L

0

(f2 dz), (42b)

Equation (42a) shows that Pdiv diminishes with the increase in V2, a conclusion revealed
also numerically in reference [10].
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Finally, in the absence of the compressive end load from equation (41) one obtains

V2
div =A g

L

0

(f0)2 dz>b1 g
L

0

f2 dz, (43)

a result which coincides with that given by equation (29).
Associated with the problem considered in this section, by using the mathematical

methodologies developed in references [25–29], a more comprehensive approach, resulting
in the possibility of incorporating a number of additional effects such as transverse shear
and non-symmetry of the cross-section can be pursued.

Needless to say, also in the case considered herein, the influence of ply angle orientation
on flutter and divergence instability conditions can be analyzed and pertinent results on
stability enhancement stability can be obtained.

8. THE CASE OF THE EXTENSION–TWIST COUPLING

In the case of extension–twist motion, due to the absence of the Coriolis effect, a
standard eigenvalue problem is reached. As a result, for each mode number, a single
branch of the natural frequency–spinning speed dependence is obtained.

In Figure 8 the first non-dimensionalized eigenfrequency v̄1(0v1/v̂) versus the
non-dimensional speen speed V�(0V/v̂) for various ply angles is depicted. For this case,
v̂=1937·8 rad/s is the first coupled extension–twist eigenfrequency determined for a
non-spinning beam characterized by u=0°, R=1 and clamped–free boundary conditions.
The results in this plot reveal that the frequency v̄1 is highly dependent on V� and,
consequently, in this case the twist is dominant. From this plot it is also seen that at the

Figure 8. Fundamental eigenfrequency v̄1 versus speen speed for different ply angles for a beam of R=1,
featuring extensional-twist cross-coupling: —×—, 0°; —w—, 30°; —r—, 45°; —t—, 60°; —e—, 75°; —q—,
90°.
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ply angles u=0°, 90° and u=45°, minimum and maximum critical speen speeds are
reached, respectively.

However, corresponding to specific values of the ply angle for which the extension–twist
cross-coupling, a17, is very weak, but the extensional stiffness a11 is very strong, sensitivity
of the variation of eigenfrequencies with that of V� would be almost immaterial. In such
a case the motion is extension-dominant. Conversely, for the cases when the
extension–twist cross-coupling is weak while the twist and warping stiffnesses a77 and a66,
respectively, are strong, the motion will be strongly influenced by V� . In this case the motion
is twist–dominant.

9. CONCLUSIONS

An analytical study devoted to the mathematical modelling of spinning thin walled
beams has been presented. Based on the derived equations, an assessment of the influence
of a number of non-classical effects on their vibrational and instability behavior has been
accomplished. Among others, the results reveal that structural tailoring can be successfully
employed to enhance their behavior by increasing the spinning speed and shifting the
domain of divergence instability towards larger spin rates.

The results provided in this paper should be useful for a better design of spinning
structures used in advanced technology.
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APPENDIX A: EXPRESSIONS OF STIFFNESS aij (0aji ) AND REDUCED MASS TERMS bi

a11 =G K11 ds, extensional stiffness (lb);

a17 =G K13 ds, extension–twist coupling stiffness (1b in);

a22 =G [K11x2 +2xK14 dy/ds+K44(dy/ds)(dy/ds)] ds, bending (lag) stiffness (lb in2);
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a25 =G (xK12 dy/ds+K24(dy/ds)(dy/ds)) ds,

bending (lag)–transverse shear coupling stiffness (lb in);

a33 =G (K11y2 −2yK14 dx/ds+K44(dx/ds)(dx/ds)) ds, bending (flap) stiffness [lb in2);

a34 =G (K12 ydx/dy+K14(dx/ds)(dx/ds)) ds,

bending (flap)–transverse shear coupling stiffness (lb in);

a44 =G (K22(dx/ds)(dx/ds)+A44(dy/ds)(dy/ds)) ds,

transverse shear stiffness in x direction (lb);

a55 =G (K22(dy/ds)(dy/ds)+A44(dx/ds)(dx/ds)) ds,

transverse shear stiffness in y direction (lb);

a66 =G [K11F2
v +2K14Fva+K44a2] ds, warping stiffness (lb in4);

a77 =G[2(Ac /b)K23] ds, torsional stiffness (lb in2).

In addition,

(b1, b4, b5, b10)=G m0(1, y2, x2, F2
v) ds, (b14, b15, b18)=G m2 0dx

ds1
2

, 0dy
ds1

2

, a21 ds;

where

(m0, m2)= s
N

k=1 g
h(k )

h (k−1)

r(k)(1, n2) dn.

In the above expressions Kij are defined as

K11 =A22 −A2
12/A11, K12 =A26 −A12A16/A11 =K21,

K44 =D22 −B2
12/A11, K13 =2K12Ac /b,
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K22 =A66 −A2
16/A11, K23 =2K22Ac /b, K24 =B26 −A16B12/A11 =K42.

In these expressions Aij , Bij and Cij denote the local stretching and bending stiffness
components, respectively.


